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Abstract. A general method for deriving the superfield equations of motion is proposed. 
These equations contain the supplementary conditions of irreducibility with respect to the 
supersymmetry group. The method uses projection operators which single out the irre- 
ducible representations and especially the algebraic roots of these operators. It is found 
that the standard equations of motion for spin-vector and symmetric tensor fields can in 
fact be obtained by extracting the square roots of the projection operators for spin-; and 
spin-2, respectively. The spinor superfield equation is deduced and discussed in detail. 

1. Introduction 

The derivation of the field equations of motion has been considered in many papers 
which use different approaches.,Aurilia and Umezawa (1969) and Belinicher (1974) 
contain references to the literature on this subject. 

We shall consider this problem in connection with superfield theory. The 
superfields (SF) are rather complicated objects, each of them containing many fields of 
integer and half-integer spins. Therefore the derivation of adequate equations for 
them is an urgent and non-trivial task. Notice that only the simplest scalar SF- 

general and chiral-have previously been considered in detail. Their equations of 
motion were conjectured by some apt unification of the equations of motion for the 
fields entering into their composition (Ferrara et af 1974, Wess 1976). However, at 
present, some higher SF are also of interest; in particular, the spinor and vector SF. The 
spinor SF is connected with an attempt to find the general supersymmetric version 
(Ogievetsky and Sokatchev 1976) of the Yang-Mills theory. In such a theoly the 
spinor SF is the gauge SF. The vector SF generated by the supercurrent of Ferrara and 
Zumino (1975) is needed in a possible supersymmetric generalisation of gravitational 
theory. 

The starting point in the above models is the derivation of the free equations of 
motion. Now it becomes impossible to seek for these equations by some form of 
sorting due to the higher complexity and increasing number of the operator structures. 
A certain clear algorithm is needed to obtain them. In the present paper such a 
procedure is proposed, based on the properties of the projection operators selecting 
irreducible representations. The new feature consists of establishing the role and 
using the roots of the projection operators (i.e. the squares of these root operators are 
the projection operators). We also show that the Rarita-Schwinger equations for the 
spin-vector field and the Pauli-Fierz equations for the symmetric-tensor field do in 
fact contain square roots of the projection operators. Therefore the approach under 
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2022 Superfield equations of motion 

consideration also has some pedagogical value in ordinary field theory. The use of the 
projection properties permits an easy definition of the Green functions. 

The paper is planned as follows. We begin with some necessary information 
concerning the SF theory and in particular we recall the composition of irreducible 
supermultiplets in the SF with arbitrary spin. Furthermore we formulate a general 
idea for the derivation of the equations, which is then illustrated by examples of the 
standard equations for spin-? and spin-2 fields. Following this, the equation for the 
spinor SF is discussed in detail. 

2. Preliminaries 

We use the following notations: 8, denote four-compcnent Majorana spinor coor- 
1; 

@ = (C-’)%9, where C = iyoy2 is the charge conjugation matrix; and 0 = a,b. The 
supersymmetry algebra 

1 0123 = dinates; T{Y,, Y,) = rlpv = diag(+- - -); YS = YOYlY2Y3; a,, = $[r,, y Y I ;  E 

[J,,, Sal = -%O;~L’S~, [P,, sa 1 = 0, {Sa, SP)= (Y,)a% (1) 

is realised on the SF 

Here i is some external Lorentz index (e.g. the scalar SF @(x, e), the spinor SF 

@, (x ,  e), the vector SF @, (x, e)  etc). We say that the SF Qi(x ,  0) has external spin j if it 
obeys the irreducibility conditions for PoincarC spin j with respect to the index i. For 
example, the SF @,(x, e )  has external spin-1 if d,W = 0 and spin-0 if a,@., = 

The irreducible representations of algebra (1) (with non-zero mass) are labelled by 
the eigenvalues of the second Casimir operator (a generalisation of the square of the 
Pauli-Lubanski vector) (Lichtman 197 1, Salam and Strathdee 1974): 

W’ = - m 4 y ( y  + 1) 

where Y is an integer or half-integer called the superspin. A representation with 
superspin Y contains four ordinary (PoincarC) spins J :  

J = Y -4, Y, Y, Y +$. (3) 
Sokatchev (1975) has shown that the H7W8SF equation (2) realises reducible 

representations of supersymmetry. Note the remarkable duality-a SF with external 
spin j contains four irreducible multiplets with superspins Y: 

y q - 4  9 9 ,  j j j + L  2 .  (4) 
The projection operators extracting these irreducible representations out of the SF 

with arbitrary spin j are also calculated and the corresponding supplementary con- 
ditions are derived (Sokatchev 1975). 

Finally, we must not forget an important operator-the spinor derivative 9, 
(Salam and Strathdee 1975). It obeys the same commutation relations (1) as S, and 
anticommutes with S, : 

{Sa, 9 p l =  0. 

For this reason all the operators invariant under the supersymmetry transformations 
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are constructed out of 9,. In particular, the projection operators mentioned above 
and the equation of motion operators in which we are interested are polynomials in 
% . 

3. Equations of motion 

It is instructive to start with an analysis of some features of the standard equations for 
the ordinary fields. In field theory elementary particles are described by fields which 
are functions of the coordinates +i (x) transforming according to some representations 
of the Lorentz group ( i  stands for a set of Lorentz indices). At the same time these 
fields give representations of the PoincarC group (with P, realised as id,). The latter 
are reducible (at least, because the value of P 2  is not fixed). On the other hand it is 
natural to associate such characteristics as mass and spin of the particles with irredu- 
cible representations of the PoicarC group, so we have to impose certain conditions on 
&(x) that single out the corresponding irreducible part. First of all, we require that 
the particle momentum p ,  lies on the mass shell 

(5 )  2 P 4i = m2di .  
Then, depending on the Lorentz index i ,  the field can describe one or more spins. It is 
conventionally assumed that one field describes one spin (as a rule, the highest it 
contains). In this connection supplementary conditions are imposed: 

R&j = 0 (6) 
where Rij represents a set of differential operators. Equation (6) excludes all the spins 
except the highest one. 

However, certain troubles arise when the Klein-Gordon equation ( 5 )  and the 
supplementary conditions (6) are written down separately. In this case introducing the 
interaction can lead to contradictions. Therefore it is strongly preferable to write 
equations ( 5 )  and (6) in the form of a single differential equation 

r,fpj = 0. (7) 
Now equations ( 5 )  and (6) are obtained as corollaries of equation (7). For instance, 
when spin-1 is described by a vector field a,(x) equations ( 5 )  and (6) read 

ma, ( x )  + m 2a, (x) = 0, 

Oa, (x) - a, d”a, (x) + m ’a, (x) = 0. 

@a, (x) = 0. 
These two equations are equivalent to the Proca equation 

(8) 
There is one more requirement which concerns the order of the operator rij in 

equation (7). We assume that rij is of first order for Fermi fields and of second order 
for Bose fields. 

How are equations of type (7) deduced to satisfy all the requirements outlined 
above? The answer is prompted by the Proca equation (8). Let us rewrite it in the 
form 

(9) 
2 - fl(II’),”a, = m a,, 

where 

m,” = 7 , u  - (d,au/o) 
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is the projection operator for spin-1. Now it is clear that the field u,(x)= 
(-O/m2)(II’),”a,(x) obeys the supplementary condition (of type (6)) 8’a, = 0. Then 
(II’),’’a, = a, and so equation (9) reduces to equation (5 ) .  

This example suggests the general idea. Let I I i j  be the projection operator which 
extracts the representation we are dealing with from the field + j ( x ) .  Multiplying by 
- 0 to a power q which is sufficient to cancel the non-locality, we obtain the equation 

(- o ) ~ I I ~ ~ + ~  = (m 2)q+j .  (10) 

Thus the irreducible representation is singled out. However, the order of equation 
(10) may be too high. Suppose that, e.g., q = 2 and a second-order equation is 
required. Then we can find (in general, not uniquely) an operator n = 
defined by 

r i j n j k  = (- o ) * n i k  

n..+. 11 I - m 2+i = 0. 

(1 1) 

(12) 

and so write an equation of the right order, namely: 

Equation (10) follows from equation (12) 

( - 0 ) 2 H i j + j  = ‘TTikrk]C$j = n i k ( m 2 + k )  = m“+j. 

This means that equation (12) selects the same representation. 
A classical illustration for this ‘root’ trick is the Dirac equation. The bispinor field 

&(x) describes spin-; only, so here the projection operator is unity and equation (10) 
takes the form of equation (5 ) :  

-O+-(x) = m2+a(X). 

We need a first-order equation so we find the nap 

r = J- = iJ 

and arrive at the common Dirac equation 

id+ -m+ = 0. 

The derivation of some other known field equations gives non-trivial examples of 
how to handle the ‘root method’. So, spin-2 is usually described by a spin-vector field 
&,(x). At the same time this field contains two spins-$. The supplementary con- 
ditions excluding these superfluous spins are 

a,*: = 0, (7 ,V)a = 0. 

We want to find an equation of motion containing these supplementary conditions. 
Consider the projection operator taking spin-; out of the field &, 

Then we write down the localised operator (-U)II,,,ap. As it includes second-order 
derivatives and we need a first-order equation (&, is a fermion field), we have to 
extract the square root of (-U)n. There is a one-parameter set of such roots, and in 
the equations obtained, a one-parameter change of field variables I/I, + 4, +Py,y”+u 
can be made. Finally, the restriction that the equations must correspond to Hermitian 
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Lagrangians leads to the Rarita-Schwinger set of equations 

(2 - m)+,  -(~(d,~y”+, + y,dy+y j +;(3a2 -2a + l)r,2r”$V 
+(3a2-3a +1)my,yU+,  =o.  

Here a is an arbitrary real parameter. 

superfluous spin-0 and spin- 1 too. The corresponding supplementary conditions 
The next example is the symmetric tensor field h,,(x) describing spin-2 and 

dph,, = 0, h”, = O  

should follow from the equations of motion. The projection operator for spin-2 is 

(1 5 )  

and it has terms containing D2. ?he operator (-U)*H is local but has derivatives of 
too high an order, so a square root is once again required. Just as in the previous case 
we obtain a one-parameter set, then introduce the changes h,, + h,, +Pq,,hAA, and 
restrict ourselves to the Lagrangian-type equations to arrive at the common Fierz- 
Pauli set of equations: 

(ii,” = 77,” - d , d u / O ) :  

H , u , A p  = h + 4 q u p  + 4 ’ ? p p q u A  - 4 q p u q A p  

Finally, we consider the massless case. The massless equations are obtained from 
the massive ones simply by putting m = 0. What about the irreducibility conditions 
now? Note that the massless equations do not lead to corollaries of type ( 5 )  and (6). 
Moreover, the character of the representations at rn = 0 changes substantially and the 
conditions (6) now lose their sense. They are replaced by one or more gauge invari- 
ances of the equation which make the superfluous degrees of freedom entirely arbi- 
trary, i.e. inessential. For instance, the Proca equation (8) becomes invariant at m = 0 
under the gauge transformation: 

a, (x 1 - a, (x 1 + d,4 (4 
where 4 ( x )  is an arbitrary scalar function. The Rarita-Schwinger equations (14) are 
invariant at m = 0 under substitutions 

with arbitrary spinor function A (x), etc. 
Now we can transfer all these considerations to the SF case. Note one peculiarity 

only: each SF contains bosons as well as fermions. To establish the right order of the 
SF equation operator the following arguments are used. The SF equations must follow 
from the action principle (Ogievetsky and Mezincescu 1975) 

S = d“x d489(x ,  6). (17) J 
Here d“6 is understood as a Grassman integral (Berezin 1966), i.e. 6, deP = amP. 
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This means that the dimensionality [de] = -3 (in cm) because [e] = 3. Then [9] = -2 
since [SI = 0 (in units f i  = c = 1). Let us write the kinetic term in the Lagrangian in the 
form 

9 K  = @ i T i j @ j  

[TI = -2 - 2[@]. 

where rij is the equation of motion operator. Now it is clear that 

(18) 

Finally, the dimensionality of the SF is determined by the dimensionality of the 
component field with the leading spin. To make this statement clear consider the 
general scalar SF @(x, 8). Suppose we are interested in the highest superspin Y =; 
which includes the leading spin-1. This spin is carried by the field A,(x) (see the 
decomposition (2)) and it is natural to ascribe to it the canonical dimensionality cm-'. 
Therefore the SF dimensionality equals zero and according to equation (18) [TI = -2. 
This is just the dimensionality of the localised superspin-; projection operator (Sok- 
atchev 1975) 

1 -  n1l2 = 1 +-(99)2. 
4 0  

T = ( - U ) r p  

Thus we find the equation (Wess 1976) 

(0 + :(a3 12)@ + m 2@ = 0. 

As was to be expected, the irreducibility condition G9@ = 0 follows from equation 
(19) at m # 0 and at m = 0 there arises a gauge invariance 

@+@+@A 

where A(x, 0) is an arbitrary scalar superfunction. If equation (19) is written in terms 
of the component fields and the auxiliary fields are eliminated, a set of the standard 
equations for a vector, a scalar and two spinors (at m = 0-for a vector and a spinor) is 
obtained. 

Now we turn to the spinor SF. 

4. The spinor superfield 

The spinor SF is defined by its decomposition 

*,(x, e) = +u(l)(~) + B B + p p ( 2 ) ( ~ )  +i&3+,(3)(~) +:6yse+,(")(~) ++~iywys~+,,'5)(x) 

+bij@eS+psp(6)(~) +&%3)2+,(7)(~); 
(20) 

+pu(2) = ( u ~ I +  uzys + i ~ , " y ,  + i ~ ~ p ' y , y ~  + i ~ ~ ~ ~ r , ~ ) ~ ~  

( 6 ' ~ ~ @ ) =  (u l1  +u2yS+iu3p'yp +iu4~~,ys+iu5~~cr , , )p , .  

If W, is a Majorana SF then all the Fermi fields: 

+,"'(x), +a(3)(x) ,  +,'"'(x), +ap(5)(x) ,  +,'"(x) 

are also Majorana fields and all the Bose fields U1...5, u ~ . . . ~  are real. 
These fields involve a considerable number of spins, among which the leading spin-5 

is the most interesting (it is connected with the field CL,, ). The leading spin enters ( 5 )  
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into the supermultiplet with the highest superspin-1, which is singled out by the 
projection operator (Sokatchev 1975) 

or equivalently by the supplementary conditions 

Gabu = 0, , 3 v a  = 0. 

We wish to find an equation which describes only this superspin-1 but not super- 
spin-; and superspin-0. 

Let the spin-vector field have the canonical dimensionality ~ m - ~ ” .  Then the 
dimensionality of the SF q u ( x ,  e )  is cm-l’* and according to equation (18) the 
equation operator must have dimensionality cm-’. The localised projection operator 
(21) has dimensionality cm-* and therefore we have to take the square root of this. 
There exists a family of such roots with arbitrary parameters 5,r) : 
4 5 ,  Y) =:{(cos 5+y5  sin 5)(6i8-iy,y5~iy,y~9)+(cos q)(Gkd +3y5Gys9) 

+(sin r))[y5(3,39 +y5Gy5~)I ) .  

However, all these roots are in fact equivalent because the equations following 
from them are connected with each other by y5 transformations: 

qIT9 + (e5ys~\II)p, e, + (evyse)u, T(x, e’) = eey5q(x, e). 
Therefore we choose one of these roots (5 = r) = 0) and write down the equation 

Q(6ib+ &3 + 3 y5Gy59 - i yFy&iyeys9)9- m q  = 0. (23) 
Using the fact that equation (23) contains v = the inverse operator is 

easily found: 

v + m  0 
r - m  O+m‘: m 
-- 1 - --( 1 +T( 1 - n)) 

which defines the Green function and is needed for the perturbation calculations. 
Equation (23) can be obtained from the action principle 

S = d4x d485!?(x, e) = - d4x d48 q(v - m ) q .  I 2 ‘ I  
One can represent the Lagrange density in a more convenient form 

= &[qiiW - + & ( G U , ~ ~ ) ~ ]  - $ m W  (24) 
using the algebraic properties of the spinor derivatives (Salam and Strathdee 1975) 
and integrating by parts. 

To be convinced once more that this Lagrangian describes the superspin-1 mul- 
tiplet it is useful to write it down in terms of component fields (see equation (20)). The 
final result will be in its most compact and illustrative form if the superfluous degrees 
of freedom are excluded, which is usually done by means of the equations of motion. 
We prefer another more legitimate procedure which involves suitable changes of the 
field variables (which are apropos also suggested by the equations of motion). After 
these changes the superfluous fields still remain in the Lagrangian but it becomes 
evident that they are inessential (as the equations of motion for them are trivial). 
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So the fermion component fields are replaced by 
*‘I’ = (I 

QL‘3’=-L 4~ + L  4y5,y +iysy,V -4(id-m)+ 

+:’= +, +fiys(ia, -my,)++4iysyP$ - w , x  
= 2~ - - i y s ~  + ys(id - m)$ 

1 1 .  
(2Sa) 

and the boson component fields by 

U l r A ,  U2 B,  U,, v, 

1 
2m us,,, = E,,, +-(a, v,, - a,,v,) 

ul=a+a,V+ 

u,=b-a,A,-mB 

u3, = I;, +d,A+2a”EV, +2mV, +-(OV,-a,a”V,,) 

u4, = a, - a,B + E,AcKaAEuK 

1 
m 

1 
m us,” = eLLv +$(a,v,, -a,vp)+&,,,ApaAAp -2mE,,, ---(mwP +a, aAE, -a ,  aAEPA). 

Then after integration over d48 the Lagrangian for the fields takes the form 

~ ( x )  =@id*, -2+”ia,yv~,, +t,Py,i,Yy”~,, +m&’”y,y”+,, 

- m & , ~ ,  -4m’($iB+ -m&+)+$Cy5x +fm& 

- 16m2E:,,+ 4ei,,- 2vz + 8maA - 8mapA, -46’ +4m2B2. 

+ 8( VFOV, - V 9 ,  a” V,,) + 8m2 V: - 8Epu€,,,~paA a,€ PKPPEap 

(26) 

The adequacy of the choice of the SF equation is confirmed. Really the irreducible 
superspin- 1 representation contains spin-2 (spin-vector field Q, having the standard 
Rarita-Schwinger Lagrangian), two spins-1 (vector V, and antisymmetric tensor E,,, 
fields with correct Lagrangians) and spin-$ (the field mQ). AI1 the other fields are 
evidently inessential. Furthermore it is easy to verify that fields Q,, V,, E,,, and m(I 
form an invariant subspace under the supersymmetry transformations. 

Now we are going to discuss the zero mass case. The corresponding Lagrangian is 
obtained by setting m = 0 in equation (24). However we cannot set m = 0 in equation 
(26) because this form is obtained from equation (24) by the singular field changes 
(25) at m +O.  This can be explained as follows. The original decomposition (20) 
contains the spinor field 9 with dimensionality cm-”’. Multiplying it by the mass we 
obtain the canonical dimensionality cm-,’*. The corresponding part in the Lagrangian 
(26) is proportional to m 2  which ensures that it vanishes as m + 0. The situation with 
the boson fields is different. In the decomposition (20) there are no fields having 
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spin-1 and dimensionality less than the canonical one of cm-’ which would enter into 
the Lagrangian (26) with a multiplier proportional to m and vanish as m + 0. There- 
fore at m = 0 in the field changes (25) all the terms which contain m must be omitted 
from both the denominators and the numerators. Then the Lagrangian may be 
written 

~ ( x )  = t jwiJ+,  -2~wiapyv+, ,  +tjpy,iJyv+u + % Y ~ x  

+ 16(VF”0V, - v”a,a”vu)-8~””~,uAp*ap + 4 e ~ , - 2 v : - 4 b 2 .  (27) 

The essential fields here are +, (chiralities *;) and V, (chiralities kl) .  (Recall that 
the zero mass supermultiplets include only two successive chiralities.) The equations 
for the other fields are trivial. In particular 

where w, and s are arbitrary vector and scalar fields, respectively. In other words the 
fields E,,, and up are not essential due to the invariance of the Lagrangian (27) under 
the gauge transformations 

E,,, + E,”  fa,^, - &w,, a, + a, + a,s. 
The Lagrangian (27) is also invariant under the standard gauge transformations of the 
vector and spin-vector fields 

where f is the arbitrary scalar function and 5 is the arbitrary spinor function. All these 
transformations have a SF form. Indeed, the Lagrangian (24) allows the gauge 
transformations (at m = 0) 

where A(x,  0)  and Z (x, 0) are arbitrary scalar superfunctions. The first, equation 
(30a),  is connected with the invariance (29a) of the Proca equation and it enables us 
to construct the generalisation of the Yang-Mills theory mentioned in 9 1 .  The second 
transformation (30b) provides the gauge freedom (29b) of the Rarita-Schwinger 
equation and causes some trouble when the interaction is introduced. 

Ending this section we wish to stress once more the compactness and effectiveness 
of the SF formalism in comparison with the treatment of the supersymmetric models in 
terms of the component fields. 

Unfortunately we are not yet familiar enough with the SF language. Because of 
this we often need lengthy and tiresome calculations in terms of the field components 
to achieve greater confidence and apparent clarity. 

In conclusion we note that the equations of motion for other SF can be obtained in 
a similar way. In connection with supergravity we are especially interested in the 
vector SF, the Lagrange theory of which will be discussed in a separate paper. 
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